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Abstract

The commonplace approach to the estimation of disaggregated impulse re-

sponses functions involves ex-ante grouping of individuals and subsequently

estimating the associated group-specific responses. This paper shows that

impulse response estimates based on this approach are subject a misclassifi-

cation bias that arises whenever researchers groups together individuals that

do not react in the same way to shocks. This paper proposes a methodology to

estimate disaggregated impulse response functions using the classifier-Lasso

which asymptotically eliminates the misclassification bias. The methodology

is used to estimate the dynamic responses of firm-level debt to an aggregate

investment specific technology shock.
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1. Introduction

Ever since the seminal contributions of Frisch (1933) and Slutzky (1937), macroe-

conomists have looked at random shocks as the primary source of business cycle

fluctuations (Ramey, 2016). For most of the twentieth century, the bulk of the

work in empirical macroeconomics was devoted to identification of macroeco-

nomic shocks and estimation of impulse response functions (IRFs) which sum-

marised the expected dynamic responses of aggregate variables to these shocks.

More recently, with the increasing availability of micro data and growing popular-

ity of heterogeneous agent models, the focus of the literature has gradually shifted

towards understanding how different firms and households respond to these ag-

gregate macroeconomic shocks. The estimation of disaggregated IRFs is important

not only to quantify what drives the responses of aggregate variables but also as a

means to empirically test the predictions from alternative transmission theories.

This paper studies the estimation of disaggregated IRFs in a setting with la-

tent group heterogeneity. Our setting is characterised by three main features: (i)

each individual belongs to a group within a broadly heterogeneous population,

(ii) the individual IRFs are the same within a group but differ between groups and

(iii) the researcher has disaggregated data on the outcome interest and a strictly

exogenous macroeconomic shock, but does not know either how many groups are

in the population or which group each individual belongs to. This setting is illus-

trated in figure 1. The estimated individual-specific IRFs (grey lines) are obtained

from a dataset in which half of the individuals belong to a group for which the

true IRF is given by the green-solid line whilst the other half the true IRF is given

by the red-solid line. The problem considered in this paper is that of a researcher

that observes a dataset that yields “cloud” of grey-lines and, based on that dataset,

would like to estimate: (i) the number of latent groups in the population, (ii) the

associated group-specific IRFs and (iii) which individuals belong to which group.
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In the existing literature, the common approach to the estimation of disaggre-

gated IRFs involves first grouping individuals in the sample according to some

external classification or observable explanatory variables and subsequently esti-

mating the group-specific IRFs by pooling together individuals that are assumed

to belong to the same group. For example, when studying the responses of con-

sumption expenditures to monetary policy changes households can be grouped

according to their housing tenure status (Cloyne, Ferreira and Surico, 2019), ac-

cording to their age (Wong, 2019) or according to their relative position in the

wealth distribution (Coibion, Gorodnichenko, Kueng and Silvia, 2017). This paper

shows that, in the presence of latent group heterogeneity, this ex-ante grouping ap-

proach can lead to misleading conclusions. More precisely, it is shown that there is

a bias-variance tradeoff between the IRF estimates obtained by ex-ante grouping

and the IRFs estimated for each individual separately. The IRF estimates based on

the ex-ante grouping of individuals are more precise but are subject to a form of

bias, which is here labeled misclassification bias, that arises whenever the grouping

of individuals imposed by the researcher groups together individuals that do not

react in the same way to aggregate shocks.

Motivated by this theoretical result, this paper introduces an alternative method-

ology to estimate disaggregated IRFs in the presence of latent group heterogene-

ity. The methodology builds from penalized estimation techniques, in particular

the classifier-Lasso (C-Lasso) from Su, Shi and Phillips (2016), in order to simul-

taneously estimate the unknown group-specific IRFs and classify individuals to

groups whereas the number of latent groups is subsequently estimated via a BIC-

type information criterion. The theoretical results in Su, Shi and Phillips (2014,

2016) imply that in our setting the group-specific IRFs estimator based on the C-

Lasso have the same asymptotic properties as the group-oracle IRFs, that is, the IRF

estimates that would result from an ex-ante grouping of individuals that exactly

matches the true unknown grouping of individuals. Most importantly, and in
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sharp contrast with ex-ante grouping approach, the C-Lasso IRF estimator achieve

this property in a completely data-driven way that does not require the researcher

to take a stance on either the number of latent groups or the individual group

membership.

To illustrate the finite sample performance of the C-Lasso based classification

and estimation procedure, this paper uses a Monte Carlo experiment in which

artificial datasets are generated from the same DGP used to generate the IRFs in

figure 1. In each Monte Carlo sample the C-Lasso framework is used to estimate

the IRFs both by estimating the whole moving average representation directly and

by local projections (Jordà, 2005). The results from this Monte Carlo experiment

illustrate the good performance of the C-Lasso in terms of determination of the

number of latent groups, classification of individuals into different groups and

estimation of group-specific IRFs in samples of similar size than those typically

used in the existing literature estimating disaggregated IRFs.

As an empirical application, the proposed C-Lasso framework is used to re-

visit the dynamic responses of firm-level debt to an aggregate investment specific

technology (IST) shock from Drechsel (2023). A theoretical prediction from the

model in Drechsel (2023) is that the debt of firms that tend to borrow against col-

lateral should decrease following a positive IST shock whereas the debt of firms

that tend to borrow against their future earnings should increase. When applied

to a subset of the Drechsel (2023) dataset, the C-Lasso framework identifies two

latent groups, one for which the response of firm-level debt to an IST shock is

positive and other for which debt reacts negatively. The group of firms that in-

crease their debt following an IST shock is composed of firms that are relatively

smaller, have a higher share of intangible assets, tend to be earnings-based bor-

rowers and do not belong to the consumer staples or utilities sectors. Altogether

these findings are in line with the theoretical predictions from Drechsel (2023), but

also suggest that, on top of whether a firm tends to borrow against earnings or
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collateral, the specific sector that the firm operates also plays a role in determining

whether it will increase or decrease its debt in response to aggregate IST shocks.

Relation to the literature. This paper relates and contributes to two strands of lit-

erature. First and foremost, it relates to the empirical macroeconomics literature

that focuses on the estimation of impulse response functions and, in particular,

to several empirical applications that estimate heterogeneous impulse responses

functions to aggregate shocks (see section 2.2 for a review of some of these appli-

cations). This paper contributes to this literature in two fundamental ways. First,

by formally showing that there is a bias-variance tradeoff between the estimator

based on ex-ante individual classification and the estimator based on individual-

specific impulse responses. Second, by introducing an alternative methodology

that produces estimates that achieve a smaller mean squared error without the

need to ex-ante take a stance on individual group membership.

Second, it relates to an extensive literature on variable-coefficient models in

panel data (see, for instance, Hsiao, 2014, chapter 6) and, in particular, to panel

structure models where individuals are assumed to belong to a number of homo-

geneous groups within a broadly heterogeneous population and the regression

parameters are the same within each group but differ across groups. Different ap-

proaches have been proposed to determine an unknown group structure in mod-

eling unobserved slope heterogeneity in panels, including finite mixture models

(e.g. Sun, 2005; Kasahara and Shimotsu, 2009; Browning and Carro, 2014), variants

of the K-means algorithm (e.g. Lin and Ng, 2012; Sarafidis and Weber, 2015; Bon-

homme and Manresa, 2015) and penalized estimation techniques (e.g. Su, Shi and

Phillips, 2014, 2016; Wang, Phillips and Su, 2018).

Most closely related to the present paper are two contemporaneous works

that also build on this literature to estimate effects of shocks on different individ-

uals. First, Lewis, Melcangi and Pilossoph (2022) use a Gaussian mixture linear
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regression to estimate the distribution of marginal propensities to consume using

the 2008 tax rebate in the United States. Second, ? introduces group local projec-

tions which build from the K-means algorithm to group heterogenous IRFs within

a local projection-IV framework. This paper is the first to use penalized estima-

tion techniques, and in particular the C-Lasso, to estimate disaggregated impulse

response functions. In addition to the desirable asymptotic properties of the pro-

posed estimator that follow from the theoretical results in Su, Shi and Phillips

(2016), a Monte Carlo experiment is provided to illustrate the good finite sample

performance of the proposed estimator with sample sizes commonly used by the

existing literature estimating disaggregated IRFs.

Structure of the paper. Section 2 introduces the data generating process and dis-

cusses some of the empirical applications it can accommodate. Section 3 discusses

the statistical properties of the common approach used to estimate heterogeneous

impulse responses in the literature. Section 4 introduces a C-Lasso based method-

ology to estimate heterogeneous impulse responses in the presence of latent group

heterogeneity and discusses its asymptotic properties. Section 5 uses a Monte

Carlo experiment to illustrate the finite sample properties of the proposed method-

ology. Section 6 applies this methodology to revisit the Drechsel (2023) impulse

response estimates of firm level debt to an aggregate IST shock. Section 7 con-

cludes and discusses avenues for future research.

Notation. In all that follows, bold letters are used to denote vectors or matrices

and non-bold fonts denote scalars. For a given matrix A ∈ Rm×n, A′ denotes its

transpose, ai,∗ denotes its i-th row, a∗,j denotes its j-th column and ai,j denotes its

(i, j)-th element. Moreover, 1m×n and 0m×n denote m × n matrices of ones and

zeros, 1 {·} denotes the indicator function, ∥·∥ denotes the Frobenius norm, ⊗

denotes the Kronecker product and ⊕ the direct sum of matrices. For any two real
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numbers a < b, denote by Z[a,b] the set of all integers in [a, b].

2. Impulse response functions under latent group heterogeneity

This section starts by introducing the process that is assumed to generate the panel

data set observed by the researcher. Then, it discusses how it can accommodate

some specifications that have been used in the literature to estimate heterogenous

impulse response functions.

2.1. The data generating process

In a nutshell, the assumed data generating process can be characterised as a dis-

tributed lag model in which the coefficients are allowed to vary across different

groups of individuals. The distributed lag model assumption can be formalised

as follows,

Assumption 1 The researcher observes a panel data set {(yi,t, xi,t)} for i = 1, . . . , N and

t = −H + 1, . . . ,−1, 0, 1, . . . , T for which the data generating process can be represented

as,

yi,t = x′i,t βi + εi,t (1)

where x′i,t ≡ [xi,t, xi,t−1, . . . , xi,t−H] and βi = [βi,0, . . . , βi,H]. Moreover, let Xi =

[xi,1, . . . , xi,T]
′ and X = {Xi}n

i=1 and assume the following three conditions hold: (a)

rank (X′
iXi) = H + 1, ∀i; (b) E (εi,t | X) = 0, ∀i, t and (c) Cov (εi,s, ε j,t | X) = 1{i =

j}1{s = t} σ2.

Assumption 1 is a panel version of a distributed lag model.2 For the macroe-

conomic applications that are the focus of the present paper, the independent vari-

ables typically consist of a macroeconomic shock and its lags, for instance, a mon-

etary policy shock or an aggregate productivity shock, in which case (1) is a finite

2 See, for instance, Greene (2003, chapter 19) or Baltagi (2008, chapter 6).
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moving average representation and the vector βi is the impulse response function

of the i-th individual in the panel to that shock.3 In that context, it is assumed that

the researcher observes a panel containing the dependent variable of interest for

different individuals over time and a time-series of the macroeconomic shock of

interest.4 The error term in (1) captures any other individual-specific factors that

affect the dependent variable of interest and it is assumed those factors are mean

independent of the macroeconomic shock and conditionally homoskedastic.5 In

order to ensure the estimators considered in this paper are well-defined, it is fur-

ther assumed that the macroeconomic shock is not perfectly collinear with any of

its lags.

In addition to assumption 1, the individual impulse response functions to the

macroeconomic shock are assumed to follow a group pattern of the form,

Assumption 2 The individual specific coefficients in (1) follow a group pattern of the

form,

βi =
K0

∑
k=1

αk1 {i ∈ Gk} (2)

where αj ̸= αk for any j ̸= k, ∪K0
k=1Gk = {1, 2, . . . , N} and Gj ∩ Gk = ∅ for any j ̸= k.

3 There can be different data generating processes that can be represented by a moving average
representation. For instance, it can arise from the inversion of a panel vector autoregression or an
autoregressive distributed lag model. If that is the case, the implicit assumption in (1) is that the
coefficients of the autoregressive component are such that that the process admits a linear moving
average representation in which the moving average coefficients decay sufficiently fast to ensure
that they can be truncated at a finite horizon H.

4 Over the last three decades, the empirical macroeconomics literature has come up with a
wide range of methods to identify macroeconomic shocks, including several identification schemes
for structural VARs, narrative identification (e.g., Romer and Romer, 2004) and high-frequency
identification (e.g., Gertler and Karadi, 2015). Different methods of identifying macroeconomic
shocks are surveyed in Ramey (2016).

5 For expositional purposes it is useful to focus on the parsimonious moving average represen-
tation in (1). Notice, however, that all the IRF estimators presented in this paper are either based
on OLS or Penalized least squares the discussion could be extended to include additional inde-
pendent variables in (1) including a constant or individual fixed-effects. In those cases, one would
simply need to use residualized versions of the dependent and independent variables.
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Assumption 2 imposes the same form of coefficient heterogeneity that is as-

sumed in Su, Shi and Phillips (2016) and, in the present context, can be justified by

the idea that there is some form of group sparsity in the way different individuals

react to macroeconomic shocks. Put differently, assumption 2 represents a middle-

ground between two extreme scenarios. One in which every single individual re-

acts in a different way to a macroeconomic shock and other where all individuals

react in the same way to that shock. Instead, according to (2), individuals can

belong to one among K0 groups and the impulse responses differ between groups

but are common across individuals within the same group. This assumption maps

naturally into macroeconomic models featuring ex-ante heterogeneity, for example,

models with optimizing and hand-to-mouth consumers (e.g. Galı́, López-Salido

and Vallés, 2007; Bilbiie, 2008) or models in which the degree of price rigidity dif-

fers across sectors (e.g. Carvalho, 2006). However, because it imposes that impulse

responses of each group do not vary over time and that individuals cannot switch

between groups over time, our setting does not map into models where individual

impulse responses vary over time such as models featuring aggregate shocks and

ex-post heterogeneity due to uninsurable idiosyncratic shocks.

Finally, it is important to notice that from the researcher’s perspective both

the true number of groups and which individuals belong to which group are

unknown and, therefore, the problem of estimating individual impulse responses

and understanding what drives their heterogeneity is equivalent to estimating the

number of groups (K0), the individual group membership ({G1, . . . , GK0}) and the

group specific impulse responses (α1, . . . ,αK0).

2.2. Empirical applications

Before turning to the estimation of individual specific impulse responses in the

presence of latent group heterogeneity, it is useful to review some heterogeneity

analysis conducted in the existing literature both to illustrate some of the settings
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where the methods developed in this paper could be applied to and to under-

stand what is the “common approach” in the literature to estimate the responses

of different individuals to a common aggregate shock.

Heterogeneous impulse responses to a monetary policy shock. There is an ex-

tensive list of heterogeneity analysis that have been conducted to investigate to

what extent monetary policy surprises have heterogeneous effects across differ-

ent individuals, firms or regions. For instance, Coibion, Gorodnichenko, Kueng

and Silvia (2017) investigate the effects of monetary policy shocks on consump-

tion of individuals depending on their relative position in the wealth distribution,

Wong (2019) investigates whether monetary policy affects differently consump-

tion expenditures of households depending on their age whilst Cloyne, Ferreira

and Surico (2019) analyze the responses of consumption expenditures depending

on whether the household is a home owner, a renter or a mortgagor. Moreover,

some papers have investigated the responses of inflation based on group specific

inflation baskets, for instance, Cravino, Lan and Levchenko (2020) investigate the

effects of monetary policy on the inflation experienced by individuals in differ-

ent percentiles of the income distribution whereas Clayton, Jaravel and Schaab

(2018) find that monetary policy stabilizes sectors that matter relatively more for

college-educated households. Bernanke and Gertler (1995) investigate the effects

of monetary policy on different components of final demand, Carlino and Defina

(1999) investigate the effects of monetary policy on the state-level economic activ-

ity across US states.

Numerous papers have also looked at the effects of a monetary policy shock

across different types of firms. For instance, Gertler and Gilchrist (1994) find

that small firms account for a significantly disproportionate share of the manu-

facturing declines that follows tightening of monetary policy, Kashyap, Lamont

and Stein (1994) find that during the 1981-82 recession bank-dependent liquidity
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constrained firms cut their inventories by significantly more than their nonbank-

dependent counterparts. More recently, Ottonello and Winberry (2020) find that

the investment of firms with low default risk is the most responsive to monetary

shocks, Jeenas (2019) finds that are the firms with fewer liquid assets that tend

to reduce investment relative to others and Cloyne, Ferreira, Froemel and Surico

(2023) find that younger firms paying no-dividends adjust both their capital ex-

penditure and borrowing significantly more than older firms paying dividends in

response to a monetary policy shock.

Other shocks. In the same spirit, heterogeneity analysis have been conducted to

understand the reactions of different groups of individuals or firms to other aggre-

gate shocks. In particular, Drechsel (2023) investigates the effects of an aggregate

investment specific technology shock on firm level debt depending on whether

firms tend to borrow against their collateral or future earnings. This application

will be revisited in section 6.

3. The common approach to estimation of heterogeneous impulse responses

Even though existing heterogeneity analyses focus different dimensions, method-

ologically they mostly follow an ex-ante classification approach, that is, they first

group individuals according to some external classification or observable explana-

tory variables and then estimate and compare the resulting group specific impulse

responses. This section analyses the properties of the estimator based on the ex-

ante classification approach and shows that in the presence of latent group het-

erogeneity there is, in general, a bias-variance tradeoff between this estimator and

estimating individual-specific impulse responses.
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3.1. Ex-ante classification and individual-specific impulse responses

To introduce the estimator based on the ex-ante classification approach, let a group-

ing scheme be denoted by G̃K which stands for any collection of K non-empty sets

satisfying ∪K
k=1G̃k = {1, 2, . . . , N} and G̃i ∩ G̃j = ∅ for any i ̸= j. In practice,

the choice of individual group membership might be a function of other observ-

able variables (e.g. the income distribution decile that the individual belongs, the

household house-tenure status or whether a firm is a flow or a collateral bor-

rower). Most importantly, G̃K is a researcher’s choice and both the number of

groups chosen and the individual classification can differ from the true number of

groups and group membership in assumption 2. Given a grouping scheme G̃K, the

impulse response estimator based on the ex-ante classification approach is defined

by,

β̃i(G̃K) =
K

∑
k=1

α̃k1
{

i ∈ G̃k
}

(3)

where,

(
α̃1(G̃K), . . . , α̃K(G̃K)

)
= arg min

a1,...,aK

1
NT

N

∑
i=1

T

∑
t=1

(
yi,t − x′i,t

K

∑
k=1

ak1{i ∈ G̃k}
)2

(4)

The group estimates obtained from (4) are nothing more than ordinary least

squares estimates obtained from pooling all the individuals in the panel and inter-

acting the shock with a dummy variable for group membership. Once the group

estimates are obtained, (3) uses the grouping scheme to assign impulse response

estimates to each individual in the panel.

As a benchmark, it will be useful to consider the estimator of impulse re-

sponses that would be obtained if the researcher did not take a stance on the
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grouping scheme and instead allowed for complete heterogeneity in the individ-

ual responses to the shock. That estimator is defined by,

(
β̂1, . . . , β̂N

)
= arg min

b1,...,bN

1
NT

N

∑
i=1

T

∑
t=1

(
yi,t − x′i,tbi

)2 (5)

where the individual-specific impulse response estimates obtained from (5) are the

same one would obtain by estimating the moving average representation using the

time-series for each individual in the panel separately.

3.2. A bias-variance tradeoff

In the presence of latent group heterogeneity the choice between the estimator

based on the ex-ante classification approach and the estimator allowing for com-

plete heterogeneity entails a bias-variance tradeoff. This tradeoff is formalised by

the following proposition,

Proposition 1 Suppose assumptions 1 and 2 hold. For a given G̃K suppose i ∈ G̃a ∩ Gb

for some a ∈ Z[1,K] and b ∈ Z[1,K0]. Let β̃i(G̃K) denote the estimator obtained from (3)

and (4) and β̂i denote the estimator obtained from (5). Then,

E
(
β̂i

)
= βi (6)

E
(
β̃i(G̃K)

)
= φa,b βi +

K0

∑
k=1
k ̸=b

φa,k αk (7)

where φa,b ≡ E

((
∑i∈G̃a

X′
iXi

)−1
∑i∈G̃a∩Gb

X′
iXi

)
. Moreover, for any non-zero H + 1-

dimensional vector r it holds that,

r′Var
(
β̂i | X

)
r ⩾ r′Var

(
β̃i(G̃K) | X

)
r (8)

Proof. See appendix A.
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In simple terms, proposition 1 states that the researcher faces a fundamental

tradeoff when deciding how to estimate individual impulse response functions in

the presence of latent group heterogeneity. On the one hand, disaggregating too

much could yield a set of estimated impulse responses that are largely uninfor-

mative once the variability across individuals reflects not only the latent group

heterogeneity but also a large share of sampling variability. On the other hand,

grouping together individuals that do not share the same responses lead to biased

impulse response estimates. This tradeoff is illustrated in figure 1. The estimation

of fully heterogeneous impulse responses yields the grey cloud of responses from

which it is almost impossible to infer the true heterogeneity pattern which comes

from the fact that half of the individuals in the sample have their true impulse re-

sponses given by the green line whereas the other half have their impulse response

given by the red line. On the other hand, if individuals were incorrectly grouped

and the ex-ante classification approach was adopter then patterns of heterogene-

ity could be mistakenly inferred from the data. For example, if all individuals

where grouped together would yield the wrong conclusion that the individuals

true impulse response is given by the black-dashed line and the cloud of individ-

ual impulse responses is the result of sampling variability and not the result of

heterogeneity in the true impulse responses.

Misclassification bias. For a given individual i, from (7) there is only one case

where β̃i(G̃K) is not biased: when all the individuals assigned to the same group

as i by the researcher indeed belong to the same latent group as individual i. This

implies that for the ex-ante classification approach to yield unbiased estimates

for all individuals in the sample requires that the ex-ante grouping of individu-

als proposed by the researcher exactly matches the the true individual grouping

in assumption 2. If this is not the case, the estimator based on the ex-ante clas-

sification approach suffers from misclassification bias. Expression in (7) states that
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on average the impulse responses estimated for a given individual are equal to a

weighted average between the impulse response of the group that individual be-

longs to and the impulse responses of other groups. For the case where xi,t is an

aggregate shock, expression (7) becomes,

E
(
β̃i(G̃K)

)
=

NG̃a∩Gb

NG̃a

βi +
K0

∑
k=1
k ̸=b

NG̃a∩Gk

NG̃a

αk (9)

where NG̃a∩Gb
denotes the cardinality of the set G̃a ∩ Gb. In this case, the weight

assigned to each latent group true impulse response is given by the share of indi-

viduals from that group that where assigned by the researcher to the same group

as individual i.

Scope for efficiency gains. Given the ex-ante classification approach is prone to

suffer from a misclassification bias, a natural question is whether the gains in pre-

cision obtained by ex-ante grouping of individuals are sufficiently large to out-

weigh the risk of ending up with biased estimates. According to (8) at any horizon

considered the sampling variance of the impulse responses obtained from the ex-

ante classification approach have smaller (or equal) variance than their counter-

parts obtained from estimating fully heterogeneous impulse response estimates.

For the case where xi,t is an aggregate shock it can be shown that,

Var
(
β̃i(G̃K) | X

)
=

1
NG̃a

Var
(
β̂i | X

)
(10)

where NG̃a
denotes the cardinality of the set G̃a. In other words, by grouping

together ten individuals, a relatively small number relative to the typical cross-

sectional dimension in datasets used to estimate heterogeneous impulse responses,

the sampling variance of impulse responses decreases by 90% which suggest that,

in general, the efficiency gains from pooling individuals together can be sizable.

15



4. Impulse response estimation via the classifier-Lasso

Motivated by the bias-variance tradeoff in proposition 1, this section introduces

an alternative way to estimate group-specific impulse responses that is designed

to eliminate this tradeoff without the requirement that the researcher correctly

specifies ex-ante the group membership. The estimation is an application of the

classifier-Lasso (C-Lasso) developed in Su, Shi and Phillips (2014, 2016) to estimate

group-specific impulse response functions in the presence of latent heterogeneity.

The fundamental insight underlying the C-Lasso is that it builds on penalized

techniques to replace ex-ante classification of individuals into groups by a data-

driven way of estimating both the individual group membership and the number

of latent groups. This section briefly reviews the C-Lasso and shows how it can be

applied to the estimation of heterogeneous impulse responses.

4.1. Determination of individual group membership

Consider the problem of determining individual group membership taking the

number of latent groups as given. First, define the following objective function

(Su, Shi and Phillips, 2014, equation 2.4),

Q(K)
NT,λ1

(b, a) =
1

NT

N

∑
i=1

T

∑
t=1

(
yi,t − x′i,tbi

)2
+

λ1

N

N

∑
i=1

K

∏
k=1

∥bi − ak∥ (11)

where λ1 is a tunning parameter that converges to zero as (N, T) → ∞. No-

tice that the first term on the right-hand-side of (11) is exactly the same objec-

tive function that is used to obtain impulse response estimates under complete

individual heterogeneity in (5). The second-term on the right-had-side of (11) is

the distinctive feature of the C-Lasso and its mixed additive-multiplicative form

shrinks the individual impulse responses (bi) to a particular unknown group-level

parameter vector (ak). Minimising (11) with respect to b and a produces the C-

Lasso estimates β and α which are henceforth denoted by β̂C-Lasso and α̂C-Lasso.
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Given this set of estimates, the C-Lasso group classifier is given by: i ∈ Ĝk if

β̂C-Lasso
i = α̂C-Lasso

k for some k ∈ Z[1,K], otherwise, i ∈ Ĝl for some l ∈ Z[1,K] if

||β̂C-Lasso
i − α̂C-Lasso

l || ⩽ { ||β̂C-Lasso
i − α̂C-Lasso

1 || , . . . , ||β̂C-Lasso
i − α̂C-Lasso

K || } and

∑K
k=1 1{β̂C-Lasso

i = α̂C-Lasso
k } = 0.6

4.2. Determination of the number of groups

The C-Lasso estimates from minimising (11) are obtained for a given number

of groups (K). In practice, however, the true number of latent groups is un-

known and has to be estimated along with the group membership. Following

Su, Shi and Phillips (2014, 2016) it is assumed that the true number of groups

is bounded from above by a finite integer Kmax and the number of groups is

estimated through an information criterion (IC).7 Making the dependence on K

and λ1 explicit, the group classification implied by the C-Lasso can be written as

Ĝ(K, λ1) =
{

Ĝ1(K, λ1), . . . , ĜK(K, λ1)
}

. The information criterion used to deter-

mine the number of latent groups is given by Su, Shi and Phillips (2016, equation

2.10),

IC(K, λ1) = ln
(

σ̂2
Ĝ(K,λ1)

)
+ ρNT (H + 1)K (12)

where ρNT is a tuning parameter and σ̂2
Ĝ(K,λ1)

= 1
NT ∑K

k=1 ∑i∈Ĝ(K,λ1)
∑T

t=1

(
yi,t − x′i,tα̂Ĝk

)2

with α̂Ĝk
=
(

∑i∈Ĝk
∑T

t=1 xi,tx′i,t
)−1 (

∑i∈Ĝk
∑T

t=1 xi,tyi,t

)
. Finally, for a given value

of the tunning parameter λ1, the number of groups is chosen such that the IC in

(12) is minimized, that is, K̂(λ1) = arg min1⩽k⩽Kmax
IC(k, λ1).

6 This group classifier achieves in large samples the same properties as the simpler classifica-
tion rule Ĝk = {i ∈ Z[1,N] : β̂C-Lasso

i = α̂C-Lasso
k } for k ∈ Z[1,K]. Nonetheless, the classifier in the

text is preferred since it ensures that all the individuals are classified into one of the K groups in
finite samples (see Su, Shi and Phillips, 2016, remark 2).

7 An alternative way of determining the number of latent groups is to use the residual-based
Lagrange multiplier-type test proposed by Lu and Su (2017).
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4.3. Post-Lasso impulse responses

Given the estimated group classification based on the C-Lasso this paper focuses

on the post-Lasso estimates of the impulse responses. For a given group Ĝk the

post-Lasso group impulse response estimates are given by α̂Ĝk
and the post-Lasso

individual impulse responses are given by β̂i,Ĝk
= ∑K

k=1 α̂Ĝk
1
{

i ∈ Ĝk

}
.

4.4. Asymptotic properties

The asymptotic properties of the C-Lasso in the context of linear models are for-

mally shown in Su, Shi and Phillips (2014, 2016). Under a suitable set of assump-

tions, the authors show that: (i) the classifier proposed in section 4.1 is uniformly

consistent which, in simple terms, means that the proposed C-Lasso group clas-

sifier classifies each individual to the correct group with probability approach-

ing 1 as (N, T) → ∞ (see Su, Shi and Phillips, 2016, theorem 2.2); (ii) the selec-

tor criterion for K proposed in section 4.2 is such that P
(
K̂(λ1) = K0

)
→ 1 as

(N, T) → ∞ (see Su, Shi and Phillips, 2016, theorem 2.6) and (iii) the post-Lasso

estimator of αk defined in section 4.3 enjoy the asymptotic oracle property, in partic-

ular, as (N, T) → ∞ it achieves the same limiting distribution as the oracle estimator

which is the group impulse response estimator one would obtain if the true group

membership was known (see Su, Shi and Phillips, 2016, theorem 2.5).

5. Monte Carlo Experiment

This section uses a Monte Carlo experiment to inspect the finite sample perfor-

mance of the classification and estimation procedure introduced in section 4 when

applied to group-specific impulse responses in the presence of latent group het-

erogeneity.
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5.1. Data generating process

Each Monte Carlo sample consist of consists of a panel data {(yi,t, xt)} for i =

1, . . . , N and t = 1, . . . , T that is generated according to,

yi,t =
12

∑
h=0

xt−hβi,h + εi,t (13)

where xt is an aggregate shock such that xt ∼ N (0, 1) and i.i.d. across t, the id-

iosyncratic shocks εi,t ∼ N (0, 1) are i.i.d. across i and t and xt and εi,t are mutually

independent. There are two latent groups (K0 = 2) and the group-specific impulse

responses are parametrised using a Gaussian basis function as in Barnichon and

Mathes (2018). In particular,

βi,h =


0.15 × exp

{
−
(

h−4
25

)2
}

, if i ∈ G1

−0.15 × exp
{
−
(

h−4
25

)2
}

, if i ∈ G2

(14)

which results in symmetric impulse responses for groups 1 and 2 as depicted in

figure 1. Individuals are assigned to group 1 if they are indexed by an odd num-

ber and assigned to group 2 if they are indexed by an even number so that, for

each sample generated, half of the individuals belong to each group. Sample sizes

of size N = {100, 200} and time spans T = {40, 80} are considered.8 For each

possible combination of N and T, 250 Monte Carlo samples are generated.

5.2. Estimation and Classification

For each Monte Carlo sample generated two alternative ways of estimating the

impulse responses are considered. The first one is by focusing directly on the

8 Even a value of T = 80 is still relatively small compared to what is typically used in the
literature using local projections to estimate impulse responses. As documented by Herbst and
Johannsen (2022) the median value for T across the 100 “most relevant” papers citing Jordà (2005)
in Google scholar is around 95.
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moving average representation and, in that case, the C-Lasso objective function

is given by (11) with x′i,t = [xt, xt−1, . . . , xt−H]. The second way of estimating im-

pulse responses is trough the use of local projections (Jordà, 2005) which use a

sequence of regressions of yi,t on xi,t−h to estimate the impulse response for in-

dividual i at horizon h. The case of local projections can be accommodated in

the C-Lasso framework described in section 4 by replacing (11) by the following

modified C-Lasso objective function,

Q̃(K)
NTH,λ1

(b, a) =
1

N(H + 1)T

N

∑
i=1

H

∑
h=0

T

∑
t=1

(yi,t − xi,t−hbh+1,i)
2 +

λ̃1

N

N

∑
i=1

K

∏
k=1

∥bi − ak∥

(15)

where bh+1,i is the (h + 1, i)-th element of the matrix b and λ̃1 is a tunning param-

eter that tends to zero as (N, T) → ∞.9 The local projections C-Lasso estimates

of β and α are obtained by minimising (15) with respect to b and a. Given these

estimates the individual classification, determination of number of groups and

post-Lasso estimates are obtained in an analogous way as described in sections

4.1 to 4.3, except the tunning parameters that are adjusted to reflect the effective

number of observations per cross-sectional unit that is different for the local pro-

jections case.

Estimation of impulse responses through local projections has become in-

creasingly popular over the last decade. Among the advantages of local projec-

tions cited in Jordà (2005) are their flexibility and the fact that they are more robust

to misspecification of the moving average representation if it arises from the inver-

sion of a misspecified vector autoregression. Notice, however, that in the present

9 The modification needed to estimate impulse responses through local projections using
the C-Lasso framework is more easily seen in matrix form. Let Xi be defined as in assump-
tion 1 and yi = [yi,1, . . . , yi,T ]

′. The first term on the right-hand-side of (11) is given by
1

NT ∑N
i=1 (yi − Xibi)

′ (yi − Xibi). Estimation through local projections simply requires replac-
ing this term by 1

NT̃ ∑N
i=1
(
ỹi − X̃ibi

)′ (ỹi − X̃ibi
)

where T̃ = (H + 1)T, ỹi = 1N×1 ⊗ yi and
X̃i = ⊕H+1

j=1 x∗,j and x∗,j denotes the j-th column of Xi.
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Monte Carlo experiment the moving average representation is not misspecified

and, hence, it is not expected that the impulse responses estimated from local pro-

jections to display better statistical properties than those estimated directly from

the moving average representation. The purpose of including impulse response

estimation through local projections in the present exercise is simply to illustrate

how they can be accommodated by the C-Lasso framework.

Tuning parameters. Determination of the number of groups and individual clas-

sification requires the researcher needs to specify the tuning parameters λ1 in (11)

and ρNT in (12). The assumptions on λ1 and ρNT needed to derive the asymptotic

properties highlighted in section 4.4 are satisfied for any λ1 such that λ1 ∝ T−a

for any a ∈ (0,−1/2) and any ρNT that can be written as ρNT ∝ (NT)−b for any

b ∈ (0, 1). Even though asymptotically the choice of the tuning parameters is ir-

relevant as long as they satisfy these conditions, in finite samples their choice can

be crucial. In this Monte Carlo experiment the values of the tuning parameters

used to estimate impulse responses through the moving average representation

are λ1 = cλs2
YT−1/3 and ρNT = 2

3(NT)−
2
3 where s2

Y denotes the sample variance of

yi,t and cλ is set equal to 2.10,11 For the estimation via local projections the tuning

parameters are adjusted to reflect the effective number of observations per cross-

sectional unit, that is, λ̃1 = c̃λs2
YT̃−1/3 and ρ̃NT = 2

3(NT̃)−
2
3 where c̃λ is equal to 2

and T̃ = (H + 1)T.

10 Su, Shi and Phillips (2016) use cλ ∈ [0.125, 0.25, 0.5, 1, 2] and select the value of cλ jointly with
the number of latent groups k to minimise the information criterion in (12). For a small number
of Monte Carlo replications it was found that jointly determining cλ with the number of groups
did not had effect on the results whilst substantially increasing the computational costs. For this
reason or each Monte Carlo replication cλ is kept fixed equal to 2. In the empirical application in
section 6, the value of cλ is grid search over the same grid used in Su, Shi and Phillips (2016) and
jointly chosen with the number of groups to minimize the information criterion.

11 For linear models Su, Shi and Phillips (2016) use ρNT = 2
3 (NT)−

1
2 . In numerical experiments,

for the DGP here considered I found this value for the tuning parameter tends to over-select num-
ber of groups that is smaller than the true number of groups. I have experimented for values
ρNT = c1(NT)−c2 for c1, c2 ∈ (0, 1) and found that ρNT = 2

3 (NT)−
2
3 tends to select the correct

number of groups with a higher frequency.
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5.3. Monte Carlo Results

The results from the Monte Carlo experiment are reported in tables 1 to 3 and in

figures 2 and 3. They can be summarised as follows:

Determination of the number of latent groups. For each DGP considered, table 1

shows the frequency that different number of groups is chosen across Monte Carlo

replications. When the number of groups is based on the estimation of the mov-

ing average representation the IC-based group determination procedure always

identifies the correct number of latent groups except in 1% percent of the samples

for N = 100 and T = 40 where the IC picks one latent group. When the num-

ber of groups is based on the estimation of local projections the performance of

the group determination procedure deteriorates, specially for the two DGPs with

T = 40 where the IC selects one latent group more often than two latent groups.

As expected, as N and T increase the frequency that the true number of latent

groups increases and, in particular, for N = 200 and T = 80 the IC selects the

correct number of latent groups in 82% of the Monte Carlo samples.

Individual classification. The average individual misclassification rates across

Monte Carlo replications for each DGP is reported in figures 2 and 3. This figure

consists of the share of individuals that are assigned to a group they do not belong

averaged across Monte Carlo samples. From figure 2, when impulse responses are

estimated through the moving average representation this figure is under 4% for

T = 40 and under 1% for T = 80 which is suggestive that the classifier proposed

in 4.1 tends to classify individuals to the correct group in finite samples too. From

figure 3, when estimating impulse responses through local projections are of the

order of 30% for T = 40% and of the order of 10% when T = 80. This inferior

performance for the local projections case is justified by the fact that coefficient

estimates from local projection regressions have much higher sampling variabil-
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ity since the error term in those regressions includes not only the original error

term from the moving average representation (εi,t) but also all the other leads and

lags that are not included.12 With higher sampling variability that estimated in-

dividual impulse responses for individuals from group 1 (group 2) end up being

closer to the impulse response from group 2 (group 1) which when applying the

classifier leads that individual to be assigned to the wrong group.

Post-Lasso impulse responses. The estimated post-Lasso impulse responses are

plotted against the true group impulse responses in figures 2 and 3. For the case

where impulse responses are estimated directly through the moving average rep-

resentation (figure 2) the estimated impulse responses almost overlap the true im-

pulse responses which indicates the absence of bias. For the case where T = 40

there is some small discrepancies that can be justified by the slightly higher mis-

classification rate than for the T = 80 case. For the case of impulse responses

estimated via local projections (figure 3), there is some bias specially for T = 40

where the misclassification rate is of the order of 30%, however, and as expected

from (9), the bias substantially decreases for the (N, T) = (200, 80) case when the

average misclassification rate drops to 7%. Moreover, the difference between the

90th and the 10th percentiles of the sampling distribution is always smaller in fig-

ure 2 than in 3 which echoes the fact that the sampling variance of the impulse

responses estimated via local projections is higher than those estimated directly

through the moving average representation (see footnote 12). The analysis of fig-

ures 2 and 3 is complemented with the figures in tables 2 and 3 that compares the

bias, variance and mean squared error for the impulse response estimates for the

two groups at horizon h = 4 (i.e. the peak of the impulse responses). The figures

12 Notice that the true data generating process is given by yi,t = ∑12
h=0 xt−hβi,h + εi,t. For a

given horizon h, the local projection regression is given by yi,t = xt−hβi,h + ε̃i,t where ε̃i,t = εi,t +

∑12
j ̸=h xt−jβi,j. Since the aggregate shocks are mean zero and iid, the fact that they are omitted

does not cause bias or inconsistency in the local projection estimates of impulse responses but it
does increase their sampling variance vis-a-vis the estimates obtained through the estimation of the
moving average representation.

23



in both tables numerically illustrate the theoretical results from proposition 1. The

full heterogeneity estimator has essentially no bias but a higher variance than the

post-Lasso estimator, whilst the post-Lasso estimator has some bias, since in finite

samples it does not achieve perfect classification of individuals into groups, but

a smaller variance. Most importantly, in MSE terms the post-Lasso estimator is

always preferred to the full heterogeneity one. In particular, for the estimation

through the moving average representation the decrease in MSE of the post-Lasso

estimator vis-à-vis the full heterogeneity over one full order of magnitude. For the

estimation through local projection the MSE of the post-Lasso estimator is one to

two thirds smaller than the MSE of the full heterogeneity estimator.

6. Aggregate IST shocks and Firm level debt revisited

This section uses the C-Lasso classification and estimation procedure introduced

in section 4 to revisit the estimation of impulse responses of firm-level debt to an

aggregate investment specific shock originally studied by Drechsel (2023).

6.1. Background

Motivated by microeconomic evidence on corporate borrowing in the US that un-

veals a direct connection between firms’ current earnings and their access to debt,

Drechsel (2023) studies the macroeconomic implications of the so-called earnings-

based borrowing constraints. First, in a prototype business cycle model the author

shows that depending on the type of borrowing constraint used firm-level debt

responds differently to a permanent investment shock. More precisely, in a setting

where firms face a standard collateral constraint their debt decreases in response

to a positive investment investment shock whereas if they face an earnings con-

straint their debt increases following that same shock (see Drechsel, 2023, figure

2).

To empirically test this model prediction, the author uses a time-series of in-
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vestment specific technology (IST) shocks identified from an SVAR using long-run

restrictions combined with a firm-level panel containing firm characteristics and

information on the types of covenants included in their debt contracts.13 The base-

line specification to test the model predictions is given by,

log (bi,t+h) = αh + βhûIST,t + γXi,t−1

+ βearn
h 1i,t,earn × ûIST,t + αearn

h 1i,t,earn (16)

+ βcoll
h 1i,t,earn × ûIST,t + αcoll

h 1i,t,coll + δt + ηi,t+h

where bi,t is the quarterly level of firms’ debt liabilities, 1i,t,earn and 1i,t,coll are

dummy variables that capture whether the firm is subject to earnings-related covenants

or uses collateral, ûIST,t is the IST shock identified based on long-run restrictions,

t is a linear time trend and Xi,t−1 is vector of controls that includes log (bi,t−1),

3-digit industry-level fixed effects, firm size, firm-level real sales growth and a

variable constructed from SVAR residuals that is meant to capture macroeconomic

shocks other than investment shocks.14 At a given horizon h, the impulse response

of an “earnings-based borrower” (“collateral-based borrower”) is given by the

sum of the coefficients βh + βearn
h (βh + βcoll

h ) and, hence, in terms of regression co-

efficients the model predictions to be tested are βh + βearn
h > 0 and βh + βcoll

h < 0.

The results based on (16) are presented in Drechsel (2023, figure 7) and are

largely in line with the model implied impulse responses. In the data, across a

wide range of specifications, debt of earnings-based borrowers reacts positively to

an IST shock whereas debt for collateral-based borrowers declines in response to

that same shock.

13 This panel is obtained by merging the Dealscan dataset with Compustat data. For more de-
tails on the construction of this dataset and which variables are used in which specification refer
to section 4.3.2 in Drechsel (2023).

14 More specifically, 1i,t,earn is equal to 1 if a given firm issues a loan with at least one earnings
covenant and 1i,t,earn is equal to one if the debt issued by the firm is secured by specific assets.
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6.2. Revisiting the responses of debt to IST shock

Following the bulk of the existing literature that has conducted heterogeneity

analysis on impulse response functions, Drechsel (2023) adopts the ex-ante clas-

sification approach described in section 3. Following the analysis of micro data on

firm-level debt issuances and theoretically grounded by model predictions, the

author groups firms depending on whether they are “earnings-based borrowers”

or “collateral-based borrowers” and estimates the impulse responses to an IST

shocks for each of these two groups of firms based on (16). In light of proposition

1, this approach can be subject a misclassification bias if the ex-ante grouping of

firms, based on whether their borrow against collateral or earnings, does not co-

incide with the true grouping that underlies the heterogeneity firm-level impulse

responses observed in the data. To investigate whether this is the case this section

re-estimates the impulse responses of firm level debt to an IST shock using the

C-Lasso classification and estimation procedure proposed in section 4. In order to

do so, the following moving average version of (16) is considered,

b̃i,t =
H

∑
h=0

βi,h ˜̂uIST,t + ϵi,t (17)

where b̃i,t denotes the residuals of a regression of log (bi,t) on a constant and a lin-

ear time trend and, similarly, ˜̂uIST,t denotes the residuals of ûIST,t on a constant and

a linear time trend. The identified IST shock is assumed to be strictly exogenous.

Since all the theoretical results for the C-Lasso are derived for a balanced panel

and all the empirical applications in Su, Shi and Phillips (2016) are also focused on

balanced panels, specification (17) is estimated using the C-Lasso approach based

on a balanced version of the Drechsel (2023) dataset. The final balanced panel

contains 746 firms and 76 quarters spanning the period from 1997Q1 to 2015Q4.15

15 To reach this balanced panel from the original Drechsel (2023) dataset, I first exclude the 12
periods of the dataset that are lost due to the lagging of the IST shock then, on the resulting sample,
I remove all the firms that have missing values of debt for any quarter between 1997Q1 to 2015Q4.
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6.3. Results

Number of latent groups and post-Lasso IRFs. As illustrated in figure 4, the

IC-based group determination procedure identifies two-latent groups. The post-

Lasso IRF estimates for each of these groups along with firm-specific IRFs and the

IRF estimated by pooling all the firms are depicted in figure 5. In line with the

theoretical predictions in Drechsel (2023), one of the two latent groups responds

positively to an IST shocks whilst the second group responds negatively. In ad-

dition, two points are also worth noting from figure 5. First, there is significant

heterogeneity among individual-specific impulse responses and without any ex-

ante theoretical reason to group individuals it would be difficult to identify the

group pattern identified by the C-Lasso just by looking at the cloud formed by

individual impulse responses. Second, despite the differences in the specifications

(16) and (17) and the sample composition, it is reassuring to see that the pooled

IRF in figure 5 has the same shape as the pooled impulse responses depicted in

figure 6 in Drechsel (2023), that, the response of debt is increasing up until 2 years

after the shock and then starts declining.16

Firm characteristics across the two groups. Despite the two latent groups and

their associated responses being in line with predictions from Drechsel (2023), the

most important aspect to be tested is whether indeed the group that responds

positively to an IST shock contains a disproportionately higher share of earnings-

based borrowers vis-à-vis the group that responds negatively. In total there are

746 firms, 224 of which where classified into the positive response group whereas

the remaining 522 where classified into the negative response group. Table 4 looks

at four different firm characteristics across these two groups. Panel A looks at the

16 Despite the similar shape of the IRFs there are some differences in terms of magnitudes. The
on impact response from the pooled specification in Drechsel (2023) is zero and the peak of the
response, that occurs 7 quarters after the shock, is around 2.5%. In figure 5, the on impact response
of debt is roughly -2% whereas the peak response is almost 6%.

27



relative proportions of earnings and collateral borrowers across the two groups.

To compute these proportions a firm is classified as earnings-based borrower if

over the whole sample it has more debt earnings based debt issuances and it is

classified as a collateral-based borrower if over the whole sample it has more col-

lateral debt issuances than earnings based ones.17 The majority of firms in both

groups are earnings-based borrowers, however, in line in the theoretical predic-

tions in Drechsel (2023) the share of earnings-borrowers is larger in the group that

responds positively to an IST shock although the difference is not statistically sig-

nificant. Panel B looks at the two measures of the share of the intangible assets

as a share of total assets. Theoretically, one would expect firms that have larger

share of intangible assets to borrow more against earnings since intangible assets

cannot be used as collateral and, hence, the larger the share of intangible assets

the more likely the firm is to respond positively to an IST shock. This is indeed the

case, as the average of both measures of intangibility are higher for group 1, yet

the difference is quantitatively small and not statistically significant. Panel C looks

at three different measures of firm size as in Dang, Li and Yang (2018). In theory,

one would expect smaller and younger firms to have less collateral to pledge and,

hence, to borrow more against their future earnings. Again this is confirmed in

the data, since for the three measures considered the average firm size is smaller

in the group 1 and the difference is statistically significant at the 10% level when

size is measured by firm’s total assets. Finally, panel D looks at sectorial composi-

tion of each of the two groups. In this respect, group 1 has a statistically significant

higher share of firms in the materials and industrial sectors whereas group 2 has

a significantly higher share of firms in the consumer staples and utilities sectors.

17 Notice this criteria is slightly different than the one used in Drechsel (2023) since the dummies
1i,t,earn and 1i,t,coll are only defined for quarters where a debt issuance for firm i appears in the
Dealscan dataset. These dummies are defined relative to a specific debt issuance and, hence, they
can vary over time (e.g. a given firm can very well issue debt against collateral in a given date
and issue another debt contract with earnings covenants in other date. To compute the shares
reported in Panel A of table 4 a firm is classified as an earnings-based borrower if ∑T

t=1 1i,t,earn >

∑T
t=1 1i,t,coll and classified as a collateral-based borrower if ∑T

t=1 1i,t,earn < ∑T
t=1 1i,t,coll . Otherwise,

if ∑T
t=1 1i,t,earn = ∑T

t=1 1i,t,coll the firm is not classified.
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Explaining group membership. To estimate the impact of each of the variables

in table 4 on the probability that a given firm belongs to each of the two groups,

a Logit model is estimated using as dependent variable a dummy that is equal

to 1 if the firm belongs to group 1. The average marginal effects of each variable

across different specifications are reported in table 5. The results in this table when

including each group of explanatory variables at a time (columns 1 to 4) largely

corroborate the conclusions based on the analysis of group characteristics in table

4. The specification in column 5 includes all the covariates at the same time. In

this specification the effects of the first three variables are quantitatively small

and not statistically significant. The only two statistically significant covariates

are the dummies for the consumer staples and utilities sectors. In particular, a

firm that is classified as consumer staples (utilities) is, on average, 40 p.p. (21

p.p.) less likely to belong to the group that for which debt increases following

an IST shock. In summary, the group that responds positively to an IST shock is

composed by firms that: (i) that are relatively smaller; (ii) have higher share of

intangible assets, (iii) tend to be earnings-based borrowers and (iv) do not belong to

the consumer staples or utilities sectors.18 This findings are largely in line with the

theoretical predictions in Drechsel (2023), but also suggest that, on top of whether

a firm tends to borrow against earnings or collateral, the specific sector that the

firm operates also plays a role in determining whether it will respond positively

or negatively to an aggregate IST shock.19

18 The type of exercise explaining group membership is in spirit to a principal component anal-
ysis where the data alone selects the orthogonal factors that explain the correlations observed in
the data and ex-post the researcher searches for appropriate names for these factors. In the present
context, the C-Lasso approach selects the number of groups, the individual classification and the
group-specific IRFs based solely on the data and it is based on the analysis of individual character-
istics across characteristics that a name for each group is determined.

19 In addition to the specification in (17), an alternative specification based on local projections
is also estimated. In that specification, the IC-based group determination procedure identifies only
one latent group. Given the superior performance of the moving average representation in identi-
fying the correct number of groups in the Monte Carlo experiment, the discussion in the main text
focuses on the moving average representation. Nonetheless, the estimates of the local projection
specification conditional on two latent groups yields post-Lasso IRFs that are similar to the post-
Lasso IRFs depicted in figure 5. Moreover, the group classification based on the local projection
specification has an overlap of 91% with the individual classification based on the moving average
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7. Conclusion

This paper studied the estimation of heterogeneous impulse responses in the pres-

ence of latent group heterogeneity. It showed that the common approach in the

literature based on the ex-ante grouping of individuals according to some exter-

nal criteria or observable explanatory variables can lead to misleading conclu-

sions. More precisely, the choice between an estimator of group-specific impulse

responses based on an ex-ante grouping of individuals and estimating individual-

specific impulse responses entails a bias-variance tradeoff. Motivated by this trade-

off, this paper proposed an alternative methodology based on the C-Lasso to esti-

mate group-specific impulse responses. A Monte Carlo experiment demonstrated

good finite-sample performance of this methodology both in classification of indi-

viduals into different groups and estimation of group specific impulse responses.

An application of this methodology to study firm level debt responses to an aggre-

gate IST shock based on Drechsel (2023) identified two latent groups. One group

of firms for which firm-level debt responds positively to an IST shock and other

for which the response is negative. The group of firms for which debt increases in

response to a positive IST shock is composed by firms that are relatively smaller,

have higher share of intangible assets, tend to be earnings-based borrowers and do not

belong to the consumer staples or utilities sectors.

I conclude by highlighting two dimensions along which the results from the

present paper can be extended and applied. On the methodological side, the

methodology proposed could be extended to include the possibility that the shocks

are used as instruments and a more thorough Monte Carlo study could be con-

ducted to search for values of the fine tuning parameter that improve finite-sample

performance in terms of group determination when using local projections. On

the applications front, the methodology here introduced could be used to either

representation.
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test alternative transmission channels from aggregate shocks to the cross-section

(in the spirit of the application in section 6) or to identify the most important di-

mensions that drive heterogeneous responses to aggregate shocks and use that

information to inform the theoretical modeling of DSGE models featuring hetero-

geneity across firms and/or households.
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Figures and Tables

Figure 1: Heterogeneous impulse responses under latent group heterogeneity
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The plot is generated based on artificially generated panel data set with 200 individuals and 40 time
periods. Half of the individuals have their true impulse responses given by the green line and the
other half by the red line. The grey lines are individual-specific estimated impulse responses. The
dashed-black line is the estimated impulse response obtained by pooling all the individuals and
ignoring coefficient heterogeneity. The data generating process is described in section 5.1.
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Figure 2: Post Lasso IRF estimates based on moving average representation
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The solid lines are the true impulse responses for each group as defined in (14). The hollow circles
represent the means of the sampling distribution of post-Lasso impulse response computed across
Monte Carlo replications. The vertical line contains the interval from the 10th to 90th percentile
of the post-Lasso impulse response estimates computed across Monte Carlo replications. For each
Monte Carlo sample the misclassification rate is computed as 1

N ∑N
i=1(1{i ∈ G1 ∩ Ĝ2}+1{i ∈ G2 ∩

Ĝ1}) and the misclassification rates reported are the average misclassification rate across Monte
Carlo samples.
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Figure 3: Post Lasso IRF estimates based on local projections
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The solid lines are the true impulse responses for each group as defined in (14). The hollow circles
represent the means of the sampling distribution of post-Lasso impulse response computed across
Monte Carlo replications. The vertical line contains the interval from the 10th to 90th percentile
of the post-Lasso impulse response estimates computed across Monte Carlo replications. For each
Monte Carlo sample the misclassification rate is computed as 1

N ∑N
i=1(1{i ∈ G1 ∩ Ĝ2}+1{i ∈ G2 ∩

Ĝ1}) and the misclassification rates reported are the average misclassification rate across Monte
Carlo samples.
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Figure 4: Group determination for IST shock x firm-level debt responses
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Each line reports values of IC(K, λ1), as defined in (12), computed from the Drechsel (2023) dataset
for alternative values of K and for λ1 = cjs2

YT
1
3 . The combination of (K, cj) that minimises the IC

is given by (2, 0.25).
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Figure 5: Post Lasso IRFs for responses of firm-level debt to IST shock
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The solid green and red lines are the estimated post-Lasso impulse responses for the two latent
groups identified in the Drechsel (2023) dataset. The dashed black line plot the impulse response
obtained by pooling all the firms together. Each grey line plots a firm-specific estimated impulse
response function. There is a total of 746 firms of which 224 are classified as belonging to group 1
and 522 are classified as belonging to group 2.

40



Table 1: Frequency of selecting K = 1, . . . , 5 when K0 = 2

Moving Average estimation

N T 1 2 3 4 5

100 40 0.01 0.99 0 0 0

100 80 0 1 0 0 0

200 40 0 1 0 0 0

200 80 0 1 0 0 0

Local Projection estimation

N T 1 2 3 4 5

100 40 0.59 0.3 0.11 0 0

100 80 0.3 0.67 0.03 0 0

200 40 0.41 0.29 0.29 0.01 0

200 80 0.1 0.82 0.08 0 0

For each DGP identified by a combination of N and T in the first two columns, this table reports
1

250 ∑250
m=1 1{K̂m = k} where K̂m is the number of groups that minimizes the information criterion

defined in (12) for the m-th Monte Carlo sample. In the top panel the C-Lasso estimates are ob-
tained from minimising (11) whereas in the bottom panel they are obtained from minimising (15).
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Table 2: Comparison of alternative βi,4 estimators based on Moving Average representation

Group 1

DGP Full Heterogeneity Post Lasso Group Oracle

N T Bias Var MSE Bias Var MSE Bias Var MSE

100 40 0.0015 0.0359 0.0361 -0.0084 0.0058 0.0059 0.0015 0.0008 0.0008

100 80 0.0006 0.0152 0.0153 -0.0018 0.0015 0.0015 0.0006 0.0003 0.0003

200 40 -0.0009 0.0379 0.038 -0.0104 0.0055 0.0056 -0.0009 0.0003 0.0004

200 80 0.0003 0.0151 0.0152 -0.0016 0.0012 0.0012 0.0003 0.0002 0.0002

Group 2

DGP Full Heterogeneity Post Lasso Group Oracle

N T Bias Var MSE Bias Var MSE Bias Var MSE

100 40 0.0001 0.0355 0.0357 0.0099 0.0026 0.0027 0.0001 0.0007 0.0007

100 80 0.0022 0.0153 0.0153 0.0045 0.0005 0.0005 0.0022 0.0004 0.0004

200 40 -0.0006 0.0381 0.0383 0.0089 0.0023 0.0024 -0.0006 0.0004 0.0004

200 80 -0.0003 0.0153 0.0154 0.0016 0.0003 0.0003 -0.0003 0.0001 0.0001

The Full Heterogeneity estimator is obtained as the minimizer of (5), the Post Lasso estimator is obtained as described in section 4.3 and the Group Oracle is
obtained as the ex-ante classification estimator from (3) and (4) under the true group membership. For a given estimator β̂i,4: (i) the bias column for group
j is computed as 1

NGj
∑i∈Gj

Bi,4 where Bi,4 = 1
250 ∑250

m=1(β̂m
i,4 − βi,4) and β̂m

i,4 denotes the estimates for βi,4 obtained from the m-th Monte Carlo sample of the

respective DGP; (ii) the variance column for group j is computed as (1/NGj)∑i∈Gj
Vi,4 where Vi,4 = (1/250)∑250

m=1(β̂m
i,4 − βi,4)

2 where βi,4 = 1
250 ∑250

m=1 β̂m
i,4

and (iii) the MSE column for group j is computed as (1/NGj)∑i∈Gj

(
B2

i,4 + Vi,4

)
.
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Table 3: Comparison of alternative βi,4 estimators based on Local Projections

Group 1

DGP Full Heterogeneity Post Lasso Group Oracle

N T Bias Var MSE Bias Var MSE Bias Var MSE

100 40 0.0003 0.0307 0.0308 -0.0748 0.0094 0.015 0.0003 0.0054 0.0054

100 80 -0.0024 0.0162 0.0162 -0.0335 0.0067 0.0078 -0.0024 0.0034 0.0034

200 40 -0.0001 0.0316 0.0317 -0.0744 0.0096 0.0151 -0.0001 0.0059 0.0059

200 80 0.0131 0.0157 0.0159 -0.0041 0.0057 0.0057 0.0131 0.003 0.0032

Group 2

DGP Full Heterogeneity Post Lasso Group Oracle

N T Bias Var MSE Bias Var MSE Bias Var MSE

100 40 -0.0002 0.0315 0.0316 0.0748 0.0178 0.0234 -0.0002 0.0057 0.0057

100 80 0.0009 0.0161 0.0162 0.0321 0.0101 0.0111 0.0009 0.0033 0.0033

200 40 -0.003 0.0311 0.0312 0.0713 0.0181 0.0232 -0.003 0.0056 0.0056

200 80 -0.0127 0.0155 0.0158 0.0045 0.0077 0.0077 -0.0127 0.0031 0.0033

The Full Heterogeneity estimator is obtained as the minimizer of (5), the Post Lasso estimator is obtained as described in section 4.3 and the Group Oracle is
obtained as the ex-ante classification estimator from (3) and (4) under the true group membership. For a given estimator β̂i,4: (i) the bias column for group
j is computed as 1

NGj
∑i∈Gj

Bi,4 where Bi,4 = 1
250 ∑250

m=1(β̂m
i,4 − βi,4) and β̂m

i,4 denotes the estimates for βi,4 obtained from the m-th Monte Carlo sample of the

respective DGP; (ii) the variance column for group j is computed as (1/NGj)∑i∈Gj
Vi,4 where Vi,4 = (1/250)∑250

m=1(β̂m
i,4 − βi,4)

2 where βi,4 = 1
250 ∑250

m=1 β̂m
i,4

and (iii) the MSE column for group j is computed as (1/NGj)∑i∈Gj

(
B2

i,4 + Vi,4

)
.
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Table 4: Firm summary statistics for the two IRF groups

Panel A: Share of Collateral and Flow Borrowers

Variable Group 1 Group 2 p-value

Collateral Borrowers 17.05% 22.14% 0.15

Earnings Borrowers 82.95% 77.86% 0.15

Panel B: Average share of Intangible Assets

Variable Group 1 Group 2 p-value

Intangible Assets/Total Assets 17.44% 16.89% 0.67

Goodwill/Total Assets 13.31% 12.43% 0.41

Panel C: Firm Size (in billions USD)

Variable Group 1 Group 2 p-value

Total Assets 6.64 9.85 0.05

Total Sales 1.73 2.01 0.54

Market capitalization 7.86 9.44 0.47

Panel D: Group Composition by GICS Sectors

Sector Group 1 Group 2 p-value

Energy 7.14% 6.32% 0.69

Materials 15.63% 8.24% 0.01

Industrials 30.80% 20.88% 0.01

Consumer Discretionary 16.07% 19.92% 0.20

Consumer Staples 3.57% 9.77% 0.00

Health Care 8.48% 6.13% 0.27

Information Technology 10.71% 8.24% 0.30

Communication Services 0.89% 1.72% 0.33

Utilities 5.80% 18.58% 0.00

The columns Group 1 and Group 2 contain the average value of each variable computed across firms
that are classified as belonging to groups 1 and 2 by the C-Lasso. The p-value column contains the
p-value for the null hypothesis that the mean of a variable in group 1 is equal to the mean in group
2 against a two-sided alternative. The GICS sectors Financials and Real Estate were excluded from
the table since there is only one firm in the Financial sector and two firms for real estate in the final
sample.
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Table 5: Average marginal effects on group membership

(1) (2) (3) (4) (5)

Flow Borrower 0.069 0.042

(0.049) (0.049)

Intangibles share 0.000 0.000

(0.001) (0.001)

Total Assets -0.002∗ -0.002

(0.001) (0.002)

Materials 0.085 0.050

(0.073) (0.085)

Industrials 0.035 -0.004

(0.065) (0.077)

Consumer Disc. -0.084 -0.109

(0.069) (0.079)

Consumer Staples -0.240∗∗ -0.396∗∗∗

(0.094) (0.137)

Health Care 0.023 -0.033

(0.081) (0.100)

IT 0.010 -0.047

(0.076) (0.091)

Communication -0.172 -0.076

(0.164) (0.181)

Utilities -0.271∗∗∗ -0.212∗∗

(0.080) (0.093)

N 578 745 746 746 577

Each column reports the estimated average marginal effects for a Logit specification where the
dependent variable is a dummy variable equal to one if the firm belongs to group 1 and 0 if if
belongs to group 2. Standard errors in parenthesis. ∗, ∗∗ and ∗∗∗ denote marginal effects that are
significant at 10%, 5% and 1% significance levels, respectively.
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Appendix to Disaggregated impulse responses via the classifier-Lasso

Miguel Bandeira

A. Proofs of results in the main text

Proof of Proposition 1. Consider first the fully heterogeneous estimator,

β̂i =
(
X′

iXi
)−1 X′

iyi (18)

where yi ≡ [yi,1, . . . , yi,T]
′. The proof of (6) is a standard textbook proof of OLS un-

biasedness under the Gauss-Markov assumptions and it follows that Var
(
β̂i | X

)
=

σ2 (X′
iXi
)−1.20 The estimator based on the ex-ante group classification approach

defined in (3) and (4) is given by,

β̃i(G̃K) =

 ∑
i∈G̃a

X′
iXi

−1

∑
i∈G̃a

X′
iyi (19)

To derive (7) let εi ≡ [εi,1, . . . , εi,T]
′ and use assumptions 1 and 2 to obtain,

20 See, for instance, Hayashi (2000, section 1.3).
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β̃i(G̃K) =

 ∑
i∈G̃a

X′
iXi

−1 ∑
i∈G̃a

X′
i (Xiβi + εi)



=

 ∑
i∈G̃a

X′
iXi

−1 ∑
i∈G̃a

X′
iXiβi + ∑

i∈G̃a

X′
iεi



=

 ∑
i∈G̃a

X′
iXi

−1 ∑
i∈G̃a

K0

∑
k=1

X′
iXiαk1{i ∈ Gk}+ ∑

i∈G̃a

X′
iεi



=

 ∑
i∈G̃a

X′
iXi

−1
 ∑

i∈G̃a∩Gb

X′
iXiβi +

K0

∑
k=1
k ̸=b

∑
i∈G̃a∩Gk

X′
iXiαk + ∑

i∈G̃a

X′
iεi

 (20)

Define φ̃a,b ≡
(

∑
i∈G̃a

X′
iXi

)−1(
∑

i∈G̃a∩Gb

X′
iXi

)
and simplify (20) to obtain,

β̃i(G̃K) = φ̃a,b βi +
K0

∑
k=1
k ̸=b

φ̃a,kαk +

 ∑
i∈G̃a

X′
iXi

−1

∑
i∈G̃a

X′
iεi (21)

Taking conditional expectations yields,

E
(
β̃i(G̃K) | X

)
= φ̃a,b βi +

K0

∑
k=1
k ̸=b

φ̃a,kαk +

 ∑
i∈G̃a

X′
iXi

−1

∑
i∈G̃a

X′
i E (εi | X)

= φ̃a,b βi +
K0

∑
k=1
k ̸=b

φ̃a,kαk (22)

where the second equality follows from the strict exogeneity in assumption 1. Fi-

nally, using the law of iterated expectations we obtain (7),

50



E
(
β̃i(G̃K)

)
= E

(
E
(
β̃i(G̃K) | X

))
= φa,b βi +

K0

∑
k=1
k ̸=b

φa,kαk (23)

where φa,b ≡ E (φ̃a,b). Proving (8) requires showing thatVar
(
β̂i | X

)
−Var

(
β̃i(G̃K) | X

)
is positive semi-definite. Start by using (20) to derive Var

(
β̃i(G̃K) | X

)
,

Var
(
β̃i(G̃K) | X

)
=

 ∑
i∈G̃a

X′
iXi

−1

Var

 ∑
i∈G̃a

X′
iεi

 ∑
i∈G̃a

X′
iXi

−1

=

 ∑
i∈G̃a

X′
iXi

−1 ∑
i∈G̃a

X′
iVar (εi | X)Xi

 ∑
i∈G̃a

X′
iXi

−1

= σ2

 ∑
i∈G̃a

X′
iXi

−1

(24)

where the second and third equalities follow from the conditional homoskedastic-

ity and no autocorrelation assumption. Combining the expressions forVar
(
β̂i | X

)
and Var

(
β̃i(G̃K) | X

)
yields,

Var
(
β̂i | X

)
−Var

(
β̃i(G̃K) | X

)
= σ2

((
X′

iXi
)−1 −

(
∑i∈G̃a

X′
iXi

)−1
)

︸ ︷︷ ︸
[∗]

(25)

The term [∗] is positive semi definite if and only if ∑i∈G̃a
X′

iXi − X′
iXi is positive

semi definite. Finally,

∑i∈G̃a
X′

iXi − X′
iXi = ∑j∈G̃a\{i} X′

jXj (26)

51



If G̃a\{i} = ∅ then ∑i∈G̃a
X′

iXi − X′
iXi = 0. If G̃a\{i} ̸= ∅, then ∑i∈G̃a

X′
iXi − X′

iXi

is the sum of positive definite matrices and, hence, positive definite. Therefore, [∗]

is positive semi-definite.
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